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ABSTRACT 

The integration of intermittent sources of energy and 

responsive loads in distribution system make the 

traditional deterministic optimization-based optimal 

power flow no longer suitable for finding the optimal 

control strategy for the power system operation. This 

paper presents a tool for energy storage planning in the 

distribution network based on AC OPF algorithm that uses 

a convex relaxation for the power flow equations to 

guarantee exact and optimal solutions with high 

algorithmic performances and exploits robust 

optimization approach to deal with the uncertainties 

related to renewables and demand. The proposed 

methodology is applied for storage planning on a 

distribution network that is representative of a class of 

networks.  

INTRODUCTION 

Energy Storage Systems (ESSs) are crucial devices for the 

upcoming Smart Distribution Systems thanks to the 

flexibility they introduce in the network operation. It has 

been seen a rapid improvement in ESS technology, but not 

yet sufficient to drastically reduce the high investments 

associated. Thus, optimal planning and management of 

these devices are essential to identify specific 

configurations that can justify ESSs installation. This 

consideration has motivated a strong interest of the 

researchers in this field that, however, proposed 

optimization algorithms very seldom capable to deal with 

uncertainties related, for instance, to the real amount and 

position of dispersed generation that is going to be 

connected to the system, the mix of renewable energy 

sources (RES), the cost of ESS or the level of participation 

and the cost for activate active demand. Such uncertainties 

cannot be dealt with stochastic optimization since it is very 

hard or impossible to define a density function for them, 

but Robust Optimization (RO) can be applied when the 

behavior of uncertainties is completely unknown. RO 

considers a set of uncertainty scenarios instead of a 

probability distribution over the possible input instances. 

Each scenario corresponds to one particular realization of 

the input. The constraints in the robust optimization should 

be considered as hard constraints which means they have 

to be maintained for all the instances in the uncertainty set. 

In RO, the modeler aims at finding decisions that are 

optimal for the worst-case realization of the uncertainties 

within a given set.  

In the literature, various mathematical models have been 

proposed to address the optimal placement of ESSs in 

power systems (see for instance [1]-[6]). The problem of 

identifying the optimal location of ESS in the electric grid 

is highly dimensional and non-convex. Since the 

placement of ESS requires analysis of the impact of them 

to the grid operation, the techniques based on 

mathematical programming such as power flow and 

optimal power flow (OPF) are more appropriate than 

exhaustive search and heuristics methods [3].  

Though the OPF algorithms are efficient at analyzing the 

active distribution planning, they require adopting 

heuristic techniques to solve high-dimensional non-

convex problem or linear convex relaxation of power flow 

equations. A two-step heuristic algorithm with master and 

slave problem has been studied in [4]. This study adopts a 

heuristic algorithm to solve the optimal siting and sizing 

problem of ESSs and then uses an AC OPF technique to 

consider optimal voltage control while reducing the total 

energy and network losses. In [5], a genetic algorithm 

(NSGA-II) has been used to identify the optimal place, 

size, and scheduling of energy storage in the distribution 

network. In the paper, a full MO (Multi-Objective) 

optimization procedure has been developed to identify the 

Pareto set of design options with fixed network topology 

for a given MV network. Another heuristic approach has 

been found in [6], where it has been analyzed a grid-

connected storage for an MO problem considering both 

distribution and transmission network objectives. 

However, heuristic techniques often required high 

computational burden and are not guaranteed to converge 

in global optima [7]. Convex relaxation techniques have 

been developed to obtain an acceptable solution while 

ensuring algorithmic efficiency. The two most commonly 

used relaxations for distribution network are Semi-definite 

Program (SDP) and Second Order Cone Programming 

(SOCP). Though both SOCP and SDP have been proven 

to be exact under certain conditions [8]-[9], SOCP has 

been considered in this paper due to its higher algorithmic 

performances.    

In this paper, RO optimization has been integrated with 

ESS optimal location in order to find a set of solutions that 

are robust against the variations of uncertain quantities. 

The final goal is to evaluate how ESS can help in operating 

of the network even in uncertain scenarios. The proposed 

methodology for ESS investment in the distribution 

network is based on a multi-period AC OPF algorithm. 
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The comparison between the deterministic formulation 

and the RO of such OPF has been made by using the SOCP 

convex relaxation to make it faster without losing in 

effectiveness. This relaxation involves equality constraints 

and replacing certain quadratic terms with linear terms as 

detailed in the next sections of the paper.  

The methodology has been tested on a distribution network 

that is representative of a class of distribution networks and 

derived from the ATLANTIDE project [10].  

DETERMINISTIC FORMULATION OF 

ENERGY STORAGE PLANNING  

The proposed methodology for storage investment in the 

distribution network is based on a multi-period AC OPF 

algorithm. The objective function (OF) consists of 

minimizing the operational extra-cost that should be 

sustained for complying with the technical constraints.  

Such cost includes the penalty terms for RES (𝐶𝑛
𝑅𝐸𝑆𝑐) and 

for biomass combined heat and power (CHP) curtailment 

(𝐶𝑛
𝐶𝐻𝑃𝑐), and the cost for the demand response (𝐶𝑛

𝐷𝑅). 

Furthermore, since the goal of the paper is to evaluate the 

contribution of energy storages to the management of the 

network, even in uncertain conditions, the investment cost 

𝐶𝑛
𝐶𝐴𝑃𝐸𝑋_𝐸𝑆𝑆 to be sustained for the storages allocated in the 

network is added to the operational cost, as in (1). 

min 𝐶𝑡𝑜𝑡 = min{∑ [𝐶𝑛
𝑅𝐸𝑆𝑐 + 𝐶𝑛

𝐶𝐻𝑃𝑐 + 𝐶𝑛
𝐷𝑅 +𝑁

𝑛=1

𝐶𝑛
𝐶𝐴𝑃𝐸𝑋_𝐸𝑆𝑆]}     

(1) 

Subject to voltage and current limits, power flow 

equations, and storage technical constraints.  

In the following each cost term and constraints are 

detailed. 

Penalty for RES curtailment 𝐂𝐧
𝐑𝐄𝐒𝐜 

The cost of curtailed energy from RES due to network 

constraint violations has been monetized as twice the price 

of energy paid in the wholesale market cEN (here, 58 

€/MWh), as in (2). 

𝐶𝑛
𝑅𝐸𝑆𝑐 = ∑ 2 ∙ 𝑐𝐸𝑁 ∙ 𝑃𝑛

𝑅𝐸𝑆𝑐(𝑡)        𝑛 = 1 ⋯ 𝑁𝑇
𝑡=1   (2) 

where 𝑃𝑛
𝑅𝐸𝑆𝑐(𝑡) is the energy curtailed at the time interval 

t by the RES generator connected to the n-th bus of the 

network. 

Since the increment of network hosting capacity may be 

quantified via the possibly avoided curtailment of RES 

production, the smaller this term, the better the storage 

allocation solution. 

Penalty for biomass CHP curtailment 𝐂𝐧
𝐂𝐇𝐏𝐜 

This cost is assumed as the fuel cost F [€/MWh] (here, 80 

€/MWh) increased by 20%, as in (3).  

𝐶𝑛
𝐶𝐻𝑃𝑐 = ∑ 1.2 ∙ 𝐹 ∙ 𝑃𝑛

𝐶𝐻𝑃𝑐(𝑡)         𝑛 = 1 ⋯ 𝑁𝑇
𝑡=1    (3) 

where 𝑃𝑛
𝐶𝐻𝑃𝑐(𝑡) is the energy curtailed at the time interval 

t by the biomass CHP connected to the n-th bus of the 

network.  

Demand response cost 𝐂𝐧
𝐃𝐑 

Regarding the term referred to the Customers, in this paper 

only the cost of shaving the peak loads has been 

considered, by assuming that it is not possible to fully 

control the customer demand but only cut a quote of their 

consumption in some critical conditions. It is assumed, as 

the RES curtailment, that this curtailed energy is paid at 

twice the energy price cEN, as in (4). 

𝐶𝑛
𝐷𝑅 = ∑ 2 ∙ 𝑐𝐸𝑁 ∙ 𝑃𝑛

𝐷𝑅(𝑡)                     𝑛 = 1 ⋯ 𝑁𝑇
𝑡=1  (4) 

where 𝑃𝑛
𝐷𝑅(𝑡) is the energy curtailed at the time interval t 

to the customer connected to the n-th bus of the network. 

Storage investment cost 𝐂𝐧
𝐂𝐀𝐏𝐄𝐗_𝐄𝐒𝐒 

The storage investment cost (SCn) is a function of the size 

of the storage in terms of rated power and energy as in (5).  

𝑆𝐶𝑛 =  𝑐𝑃 ∙ 𝑃𝑛
𝑟𝑎𝑡𝑒𝑑 + 𝑐𝐸 ∙ 𝐸𝑛

𝑟𝑎𝑡𝑒𝑑      𝑛 = 1 ⋯ 𝑁 (5) 

where cP and cE are the specific costs of the ESS adopted 

technology, reliant respectively on the power rating 𝑃𝑛
𝑟𝑎𝑡𝑒𝑑  

and the nominal capacity 𝐸𝑛
𝑟𝑎𝑡𝑒𝑑

 of the n-th ESS located in 

the network (here cP =200 €/kW and cE =400 €/kWh 

according to the market cost of Lithium-ion technology).  

In order to consider this cost in the objective function (1) 

only a daily quote of SCn is added to the operational terms 

of (1), calculated as in (6). 

𝐶𝑛
𝐶𝐴𝑃𝐸𝑋_𝐸𝑆𝑆 =

𝐾𝑆

365
∙ 𝑆𝐶𝑛                𝑛 = 1 ⋯ 𝑁         (6) 

where Ks is a capital recovery factor (here Ks=0.1, for 

considering 10 years as ESS lifetime).  

In this paper, it is assumed that the storages are DSO 

owned and managed for relieving contingencies. Thus, the 

ESS OPEX (operational expenditures) is not considered in 

the optimization. According to this point of view, it is 

supposed that the minimization of operational cost 

represents the only incomes that allow DSO to pay back 

EES CAPEX (capital expenditures) and operational 

expenditures. Actually, a term that takes into account the 

depreciation of the ESSs due to their use could be included, 

but in this paper this cost is assumed negligible. 

Minimization constraints and relaxation 

In the proposed multi-temporal AC OPF model, the SOCP 

convex relaxation has been used. The active and reactive 

power flows in the proposed OPF problem is formulated 

as in eq. (7) and (8). 

𝑃𝑛
𝑔(𝑡) + 𝑃𝑛

𝑅𝐸𝑆(𝑡) − 𝑃𝑛
𝑅𝐸𝑆𝑐(𝑡)+𝑃𝑛

𝐶𝐻𝑃(𝑡) − 𝑃𝑛
𝐶𝐻𝑃𝑐(𝑡) −

𝑃𝐷𝑛(𝑡) + 𝑃𝑛
𝐷𝑅(𝑡) − 𝑃𝑛

𝑐(𝑡)+𝑃𝑛
𝑑(𝑡) − ∑ 𝑅𝑚𝑛 ∙ 𝐼𝑚𝑛

2
𝑚𝜖𝜃𝑛

=

∑ 𝑃𝑚𝑛𝑚𝜖𝜃𝑛
(𝑡)  

(7) 

𝑄𝑛
𝑔(𝑡) + 𝑄𝑛

𝑅𝐸𝑆(𝑡) − 𝑄𝑛
𝑅𝐸𝑆𝑐(𝑡) + 𝑄𝑛

𝐶𝐻𝑃(𝑡) − 𝑄𝑛
𝐶𝐻𝑃𝑐(𝑡) −

𝑄𝐷𝑛(𝑡) − ∑ 𝑋𝑚𝑛 ∙ 𝐼𝑚𝑛
2

𝑚𝜖𝜃𝑛
= ∑ 𝑄𝑚𝑛𝑚𝜖𝜃𝑛

  
(8) 

Where (𝑃𝑛
𝑅𝐸𝑆(𝑡); 𝑄𝑛

𝑅𝐸𝑆(𝑡))  and (𝑃𝑛
𝐶𝐻𝑃(𝑡); 𝑄𝑛

𝐶𝐻𝑃(𝑡)) 

define the expected RES and CHP production, 𝑃𝐷𝑛(𝑡) and 

𝑄𝐷𝑛(𝑡) are the active and reactive power delivered to the 

load connected to the n-th node, 𝐼𝑚𝑛(𝑡), 𝑃𝑚𝑛(𝑡), and 

𝑄𝑚𝑛(𝑡) are respectively the current, the active and the 

reactive power flowing from m-th bus to the n-th one, 

𝑄𝑛
𝑅𝐸𝑆(𝑡) is the reactive power provided by PV and wind, and 

𝑅𝑚𝑛 and 𝑋𝑚𝑛 are the resistance and reactance of the mn-th 

branch. 𝑃𝑛
𝑔(𝑡) and 𝑄𝑛

𝑔(𝑡) are the active and reactive power 

provided by the upstream connections (first node of the 

network). The values of 𝑃𝑛
𝑔(𝑡) and 𝑄𝑛

𝑔(𝑡) are zero except 
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for the first node. The current magnitude quadratic term 

can be defined as function of the corresponding active and 

reactive power quadratic terms (eq. (9)-(11)).  

𝐼𝑚𝑛
2 ≥

𝑃𝑚𝑛
2 + 𝑄𝑚𝑛

2

𝑉𝑛
2  (9) 

𝑃𝑚𝑛
2 (𝑡) + 𝑄𝑚𝑛

2 (𝑡) = 𝑆𝑙
2(𝑡) (10) 

𝑖𝑚𝑛(𝑡) ∙ 𝑣𝑚𝑛 (𝑡) = 𝑆𝑙
2(𝑡) (11) 

The equality constraints in this model, eq. (9), are relaxed 

ultimately by relaxing the magnitude of currents within 

each branch and using a conic formation on the limitation 

of exchanged active power.  

For linearization purposes, the quadratic terms of voltage 

and current magnitude have been replaced with the linear 

ones as in (12).  

𝐼𝑚𝑛
2 = 𝑖𝑚𝑛 ;  𝑉𝑚𝑛

2 = 𝑣𝑚𝑛 (12) 

The new variables (𝑖𝑚𝑛, 𝑣𝑚𝑛) successfully formulate the 

SOCP problem cording with the following constraints. 

𝑉𝑚𝑖𝑛
2 ≤ 𝜐𝑛(𝑡) ≤ 𝑉𝑚𝑎𝑥

2  (13) 

𝑃𝑛
𝑚𝑖𝑛 𝑅𝐸𝑆𝑐/𝐶𝐻𝑃𝑐

≤ 𝑃𝑛
𝑅𝐸𝑆𝑐/𝐶𝐻𝑃𝑐(𝑡) ≤ 𝑃𝑛

𝑚𝑎𝑥𝑅𝐸𝑆𝑐/𝐶𝐻𝑃𝑐
 (14) 

𝑄𝑛
𝑚𝑖𝑛 𝑅𝐸𝑆𝑐/𝐶𝐻𝑃𝑐

≤ 𝑄𝑛
𝑅𝐸𝑆𝑐/𝐶𝐻𝑃𝑐(𝑡) ≤ 𝑄𝑛

𝑚𝑎𝑥𝑅𝐸𝑆𝑐/𝐶𝐻𝑃𝑐
 (15) 

The eq. (13) provides the voltage limits of each bus. The 

eq. (13)-(15) limit the active and reactive power 

curtailment associated with RES and CHP generators. 

Furthermore, the constraints about storages may be 

formulated as in (16)-(20). 

𝑆𝑂𝐶𝑛(𝑡) = 𝑆𝑂𝐶𝑛(𝑡 − 1) + (𝑃𝑛
𝑐(𝑡) ∙ ɳ𝑐 −

𝑃𝑛
𝑑(𝑡)

ɳ𝑑
) ∙ ∆𝑡 (16) 

0 ≤ 𝑃𝑛
𝑐(𝑡) ≤ 𝛼𝑛

𝑐 ∙ 𝑃𝑛
𝑐,𝑚𝑎𝑥(𝑡) (17) 

0 ≤ 𝑃𝑛
𝑑(𝑡) ≤ 𝛼𝑛

𝑑 ∙ 𝑃𝑛
𝑑,𝑚𝑎𝑥(𝑡) (18) 

𝑆𝑂𝐶𝑛,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑛(𝑡) ≤ 𝑆𝑂𝐶𝑛,𝑚𝑎𝑥  (19) 

𝛼𝑛
𝑐 (𝑡) + 𝛼𝑛

𝑑(𝑡) ≤ 1 (20) 

where 𝛼𝑛
𝑐 (𝑡) ϵ [0 or 1]   and   𝛼𝑛

𝑑(𝑡)  ϵ [0 or 1]. 

The state of charge (SOC) of energy storage devices is 

calculated by considering the initial state of charge and 

charging and discharging efficiencies ɳ𝑐 and ɳ𝑑 (eq. (16)). 

To restrict the maximum charging and the depth of 

discharging and for avoiding the simultaneous charging 

and discharging, the binary variables 𝛼𝑛
𝑐  and 𝛼𝑛

𝑑, of which 

only one can be different from zero, have been considered 

in eq. (17)-(20). An additional constraint is added to force 

the SOC of the first time-step to be the same to the SOC of 

the last one of the time horizon T as represented by eq. 

(21).   

𝑆𝑂𝐶𝑛,0 = 𝑆𝑂𝐶𝑛,𝑇 (21) 

It is worth mentioning that during the estimation of 

charging and discharging power of the storage unit, a 

quadratic term has arisen due to the multiplication of 

binary and integer variables. A decomposition technique 

has been used to linearize the relevant constraints by 

rewriting constraints in the form of (22) as in (23) and (24) 

to avoid the bilinear terms. 

𝑥 <=  𝑦 ∗  𝑧 ∗  𝑐 (22) 

𝑥 <=  𝑦 ∗  𝑧𝑚𝑎𝑥  ∗  𝑐𝑚𝑎𝑥 (23) 

𝑥 <=  𝑧 ∗  𝑐 (24) 

for 𝑥 continuous, 𝑦 binary, 𝑧 integer variable in 

[0, 𝑥𝑚𝑎𝑥] and [0, 𝑧𝑚𝑎𝑥]. 

ROBUST OPTIMIZATION FORMULATION 

The robust model takes into account the set of values for 

the uncertain parameters, named uncertainty set. The 

selection of uncertainty solely depends on the available 

information of uncertain parameters and the level of 

robustness acceptable by the decision maker. A 

compromise between the robustness against each physical 

realization of the uncertain parameters and the size of the 

uncertainty set should be reached for making reasonable 

planning problems. The most robust uncertainty set which 

guarantees that the constraints are never violated is the box 

uncertainty set. However, this kind of sets only considers 

the worst scenarios that often make the model very 

conservative, leading to unacceptable solutions [11]. Since 

box uncertainty set is often too pessimistic, two other 

uncertainty sets are used in practice: the ellipsoidal and the 

polyhedral uncertainty set. The ellipsoidal uncertainty set 

leads to a better objective value for a fixed probability 

guarantee. However, it could lead to a quadratic constraint 

from a linear problem. In this paper, the polyhedral 

uncertainty set which considers being tractable from a 

computational point of view is used. This set can be 

expressed as in (25). 

𝑈 = {𝜉 ∈ ℝ𝐿: ‖𝜉∞‖ ≤ Γ} (25) 

where the real vector of dimension L 𝜉 is the only 

knowledge available, namely perturbation vector, that 

varies inside a given interval. ‖𝜉∞‖ defines the continuous 

uniform norm of 𝜉 and Γ is the measure of the uncertainty.  

This type of uncertainty set also called as a budgeted 

uncertainty set since the level of robustness can be 

adjusted with Γ. It is important to properly select the 

budget of uncertainty Γ in order to have a reasonable 

solution maintaining sufficient robustness of the model. In 

this work, the polyhedral uncertainty set has been adopted 

since it produces sufficiently robust solution if the budget 

of uncertainty is chosen based on the uncertainty level one 

wants to accept. As Γ increases, more uncertain the 

considered scenario, and less risky becomes the solution.  

RO problem usually contains an infinite number of 

constraints due to imposing worst case formulation and 

hard constraints. Therefore, it is often computationally 

unfeasible. Generally, there are two ways to deal with this 

kind of situation [12]. One way to deal with this issue is 

using robust reformulation techniques to make the 

formulation immune of all the uncertain parameters, 

adopted in this paper. Since the uncertainty is constraint-

wise, the reformulation will only deal with constraints, 

which contain the uncertain parameters. The robust model 

structure and its OF is identical as in the deterministic 

model. The changes will arise in the constraints involving 



 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019 
 

Paper n° 2301 

 
 

CIRED 2019  4/6 

the uncertainty. In this paper, three uncertain parameters 

are considered, the forecasted real power of wind 

farms 𝑃𝑤, the expected real power of PV plant 𝑃𝑝𝑣 and 

demand 𝑃𝐷𝑛. The uncertain parameter, indicated with 

tilde (~), are 𝑃𝑤,𝑡
̃ , 𝑃𝑝𝑣,𝑡 and 𝑃𝐷,𝑡̃ that represent the uncertain 

wind power output, the uncertain PV output and the 

uncertain load demand at each time step 𝑡 respectively. 

∆𝑃𝑤, ∆𝑃𝑝𝑣 and ∆𝑃𝐷 are their maximum deviations from the 

expected values. The polyhedral uncertainty set for wind 

power output can be defined as in (26). 

𝑈𝑤 = {𝑃𝑤,𝑡
̃ : 𝜉𝑤,𝑡 ∈ ℝ𝐿  𝑠. 𝑡‖𝜉∞‖ ≤ Γ𝑤} 

𝑃𝑤,𝑡
̃ ∈ [𝑃𝑤,𝑡 + ∆𝑃𝑤,𝑡 ∙ 𝜉𝑤,𝑡] 

(26) 

where 𝜉𝑤  is the degree of uncertainty of the wind power 

output. In other words, it can be considered as the 

quantification of the actual deviation from the forecasted 

value 𝑃𝑤 and it belongs to the interval[−1; 1]; 𝛤𝑤  is the 

budget of wind generation uncertainty that lies between 0 

to 1, where 0 being the deterministic case and 1 defined 

the most robust case. Due to the space limitation, the 

reformulation process of PV has been omitted but the 

process is completely analogous to wind power. The 

similar formulation will be applied to load demand 

uncertainty as in (27).  

𝑈𝐷 = {𝑃𝐷,𝑡̃: 𝜉𝐷,𝑡 ∈ ℝ𝐿  𝑠. 𝑡‖𝜉∞‖ ≤ Γ𝐷} 

𝑃𝐷,𝑡
̃ ∈ [𝑃𝐷,𝑡 + ∆𝑃𝐷,𝑡𝜉𝐷,𝑡] 

(27) 

As for the case of wind, the larger 𝛤𝐷, the larger the 

uncertainty set, and the larger the worst-case value of the 

uncertain component of the constraint. 

The reformulation process is composed of three main 

steps: (i) worst case reformulation, (ii) duality and (iii) 

robust counterpart.  

Worst case reformulation    

First, it is important to identify the maximum deviation 

from the nominal value and rewrite the constraints that are 

affected by the uncertain parameters such as a way that it 

considers the possible worst case. In the worst case of 

maximum load and minimum production, the value of  𝜉𝐷 

will be 1 and the values of  𝜉𝑤 and   𝜉𝑝𝑣 will be -1. Thus, 

the worst case has been formulated as inner problems of 

maximization of the demand deviation and minimization 

of the power production deviation. In Table I the inner 

problems and their new formulation for demand, wind and 

PV, respectively, are reported. Additional variables 

𝑀𝐷,𝑡(𝑀𝐷,𝑡 ≥ 0), 𝑀𝑤,𝑡(𝑀𝑤,𝑡 ≤ 0) and 𝑀𝑝𝑣,𝑡(𝑀𝑝𝑣,𝑡 ≤

0) are introduced to relax the absolute term.  

Table 1: Worst case formulation of uncertain parameters 

Demand: 

max(∆𝑃𝐷,𝑡 ∙ 𝜉𝐷,𝑡) 

𝑠. 𝑡. |𝜉𝐷,𝑡| ≤ Γ𝐷 

0 ≤ |𝜉𝐷,𝑡| ≤ 1 

max(∆𝑃𝐷,𝑡 ∙ 𝜉𝐷,𝑡) 

𝑠. 𝑡. M𝐷,𝑡 ≤ Γ𝐷 

M𝐷,𝑡 ≥ 𝜉𝐷,𝑡 

−1 ≤ 𝜉𝐷,𝑡 ≤ 1 

Wind: 

min(∆𝑃𝑤,𝑡 ∙ 𝜉𝑤,𝑡) 

𝑠. 𝑡. |𝜉𝑤,𝑡| ≥ Γ𝑤  

|𝜉𝑤,𝑡| ≤ 1         ∀𝑤 

min(∆𝑃𝑤,𝑡 ∙ 𝜉𝑤,𝑡) 

𝑠. 𝑡. M𝑤,𝑡 ≥ −Γ𝑤  

M𝑤,𝑡 ≤ 𝜉𝑤,𝑡     ∀𝑤 

−1 ≤ 𝜉𝑤,𝑡 ≤ 1   ∀𝑤 

PV: min(∆𝑃𝑝𝑣,𝑡 ∙ 𝜉𝑝𝑣,𝑡) min(∆𝑃𝑝𝑣,𝑡 ∙ 𝜉𝑝𝑣,𝑡) 

𝑠. 𝑡. |𝜉𝑝𝑣,𝑡| ≥ Γ𝑝𝑣 

|𝜉𝑝𝑣,𝑡| ≤ 1         ∀𝑝𝑣 

𝑠. 𝑡. M𝑝𝑣,𝑡 ≥ −Γ𝑤  

M𝑝𝑣,𝑡 ≤ 𝜉𝑝𝑣,𝑡    ∀𝑝𝑣 

−1 ≤ 𝜉𝑝𝑣,𝑡 ≤ 1   ∀𝑝𝑣 

Moreover, each uncertain parameter will be solved 

separately. 

Forming Dual 

In order to make the problem computationally tractable, 

this step aims at finding the dual of the inner 

minimization/maximization problems. Their duals, even 

the dual variables do not have any physical meaning, yield 

the same optimal objective value by strong duality 

theorem. Therefore, the inner optimizations can be 

reformulated as in Table 2, where 𝑄, 𝐺, 𝐼 and 𝑅 are the 

dual positive variables respectively associated with the 

primal optimization problem (the subscripts are related to 

the demand, wind and, PV respectively).  

Table 2: Dual forming of uncertain parameters  

Demand: 

𝑚𝑖𝑛{𝑄𝐷,𝑡 ∙ Γ𝐷 + 𝐺𝐷,𝑡 + 𝐼𝐷,𝑡} 

𝑠. 𝑡 𝑅𝐷,𝑡 + 𝐺𝐷,𝑡 − 𝐼𝐷,𝑡 = ∆𝑃𝐷,𝑡 

𝑄𝐷,𝑡 − 𝑅𝐷,𝑡 ≥ 0 

Wind: 

𝑚𝑎𝑥{−𝑄𝑤,𝑡 ∙ Γ𝑤 − 𝐺𝑤,𝑡 − 𝐼𝑤,𝑡} 

𝑠. 𝑡. 𝑅𝑤,𝑡 − 𝐺𝑤,𝑡 + 𝐼𝑤,𝑡 = ∆𝑃𝑤,𝑡      ∀𝑤 

𝑄𝑤,𝑡 − 𝑅𝑤,𝑡 ≥ 0     ∀𝑤 

PV: 

𝑚𝑎𝑥{−𝑄𝑝𝑣,𝑡 ∙ Γ𝑝𝑣 − 𝐺𝑝𝑣,𝑡 − 𝐼𝑝𝑣,𝑡} 

𝑠. 𝑡. 𝑅𝑝𝑣,𝑡 − 𝐺𝑝𝑣,𝑡 + 𝐼𝑝𝑣,𝑡 = ∆𝑃𝑝𝑣,𝑡     ∀𝑝𝑣 

𝑄𝑝𝑣,𝑡 − 𝑅𝑝𝑣,𝑡 ≥ 0     ∀𝑝𝑣 

Forming the robust counterpart 

The inner optimization problems for demand, wind, and 

PV are ready to be integrated into the main deterministic 

model. To get the robust counterpart of the original 

deterministic model, the objective functions of the dual 

form have to be added in the respective constraint and the 

constraints of the dual form will need to be included in the 

algorithm. All the constraint containing uncertain 

parameter can be replaced with linear constraints without 

uncertainty and converted into a mixed integer form. Since 

in the main deterministic model, only one constraint is 

affected by uncertainty, namely the power balance 

equation (7), the reformulated power balance equation 

becomes as in (28). 

𝑃𝑛
𝐶𝐻𝑃(𝑡) − 𝑃𝑛

𝐶𝐻𝑃𝑐(𝑡) − 𝑃𝑛
𝑅𝐸𝑆𝑐(𝑡) + 𝑃𝑛

𝐷𝑅(𝑡) + 𝑃𝑛
𝑑(𝑡) −

𝑃𝑛
𝑐(𝑡) − 𝑃𝐷𝑛(𝑡) − 𝑄𝐷,𝑡 ∙ Γ𝐷 + 𝐺𝐷,𝑡 + 𝐼𝐷,𝑡 + 𝑃𝑤(𝑡)−𝑄𝑤,𝑡 ∙

Γ𝑤 − 𝐺𝑤,𝑡 − 𝐼𝑤,𝑡 − 𝑅𝑚𝑛 ∙ 𝐼𝑚𝑛
2 = ∑ 𝑃𝑚𝑛𝑚𝜖𝜃𝑛

(𝑡)  

   

(28) 

The additional constraints for load demand, wind, and PV 

that will be added in the algorithm are reported in (29)-

(34). 
Demand: 𝑅𝐷,𝑡 + 𝐺𝐷,𝑡 − 𝐼𝐷,𝑡 = ∆𝑃𝐷,𝑡 

𝑄𝐷,𝑡 − 𝑅𝐷,𝑡 ≥ 0 

(29) 

(30) 
Wind: 𝑅𝑤,𝑡 − 𝐺𝑤,𝑡 + 𝐼𝑤,𝑡 = ∆𝑃𝑤,𝑡      ∀𝑤 

𝑄𝑤,𝑡 − 𝑅𝑤,𝑡 ≥ 0                 ∀𝑤 

(31) 

(32) 
PV: 𝑅𝑝𝑣,𝑡 − 𝐺𝑝𝑣,𝑡 + 𝐼𝑝𝑣,𝑡 = ∆𝑃𝑝𝑣,𝑡      ∀𝑝𝑣 

𝑄𝑝𝑣,𝑡 − 𝑅𝑝𝑣,𝑡 ≥ 0                 ∀𝑝𝑣 

(33) 

(34) 

The new model does not contain any uncertainty and is 

formulated as a mixed integer second order conic 

programming (MISOCP) problem that can be solved 
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efficiently using CPLEX that uses a branch and cut 

algorithm to find the integer feasible solution.  

CASE STUDY 

The procedure has been applied to a test distribution 

network derived from the ATLANTIDE project [10]. The 

MV network, representative of the industrial ambit, is 

constituted by 100 nodes, subdivided in 7 feeders. The 

total demand is about 30 MVA (372 GWh/year) and the 

total installed DG capacity is 34 MW (27.2 GWh/year), as 

mix of wind, PV and biomass CHP generators. 

The generation and load profiles were simulated according 

to the ATLANTIDE annual profiles. Furthermore, in this 

paper, the annual profiles have been reduced to twelve 

typical day profiles, differentiated between working days, 
Saturdays and holidays (Sundays included), and between 

seasons, for each kind of customers (i.e., industrial, 

residential, commercial and agricultural) and for each 

technology of DG (i.e., wind turbine, PV and CHP).  

 
Fig. 1: Test network 

The mathematical formulation of the RO for an AC OPF 

based energy storage planning tool has been programmed 

in GAMS and solved using CPLEX on a 2.30 GHz 

personal computer with 4GB RAM. In this experimental 

study, the worst case has been considered when the load is 

high (𝜉𝐷,𝑡=1) and wind and PV generation is low (𝜉𝑤,𝑡=-

1).  

For the sake of brevity, in the following, the results 

obtained by the application of the described optimization 

to one typical day, the winter working days, have been 

reported. The time horizon of 24h has been considered 

with a time step of 1h. Three scenarios have been 

considered: the certain one (solved by the deterministic 

OPF) and two uncertain scenarios with different values of 

risk (𝛤 = 0.5 and 𝛤 = 1), both solved with RO. 

In this typical day some under voltage conditions occur 

and, thus, for solving these issues it is necessary to resort 

to the load peak shaving. ESSs prove to be useful for 

reducing the curtailment of the demand. 

Storage Allocation 

All the buses of the test network were assumed candidates 

for storage placement. The available ESS were considered 

of 1.0 MW/2h storage capacity. The efficiencies for 

charging and discharging were considered 90% each, 

which gives an overall roundtrip efficiency of 81%.   

Table 3 shown which busses are chosen by the algorithms 

for the ESS installation.    

Table 3: ESS location in the test network of Fig. 1  

Scenarios ESS Location 

Certain scenario 𝚪 = 𝟎 14 

Medium risk scenario 𝚪 = 𝟎. 𝟓 14, 67 

No risk scenario 𝚪 = 𝟏 11, 14, 67 

In the deterministic model, any consideration of 

uncertainty is avoided by assuming perfect information for 

all parameters. Such a certain case (Γ = 0) suggests 1 

storage device to be installed in the network. As the budget 

of uncertainty increases, the number of storages increases 

from 2 (Γ = 0.5) to 3 in the no risk scenario that includes 

the worst case. By comparing the three scenarios, it is 

worth noticing that the results are substantially 

incremental: the medium risk scenario includes the 

location of the certain one and the robust scenario (no risk) 

includes in turn the intermediate one. In the robust scenario 

(no risk), it is observed that the ESS locations in the feeder 

F1 of Fig. 1 are two instead of the only one installed in the 

more certain cases.  

Table 4 summarizes the daily operational costs for the four 

examined  scenarios and the quantity of shed demand for 

solving the remaining contingencies. The peak shaving 

drastically decreases by using the ESS of the certain 

scenario (deterministic OPF) and then it is progressively 

further reduced in the uncertain scenarios. A significant 

reduction of daily operational cost has been observed with 

the ESS inclusion in the deterministic OPF and in the 

medium risk scenario. The resort to load shedding is so 

much reduced (-50% in the certain scenario and even -85% 

in the intermediate scenario) that the CAPEX for ESS 

installation does not negatively impact in the final cost. 

Hence, operational cost, even in the medium risk solutions, 

is reduced since the penalty for load shedding is even 

higher the investment cost of storages. The no risk scenario 

requires one more ESS to be installed in the network, thus, 

the daily operational cost increases. This demonstrates that 

the ESS in this system help to avoid the peak shaving of 

loads but for relieving even the worst case and reducing 

even more the resort to load shedding it becomes necessary 

an expensive investment.  

Table 4: Daily operation cost of the test network  

Scenarios Operational 

cost [€/day] 

Load shedding 

[MWh/day] 

No storage scenario 811.61 6.99 

Certain scenario 𝚪 = 𝟎 683.89 3.53 

Medium risk scenario 𝚪 = 𝟎. 𝟓 667.57 1.03 

No risk scenario 𝚪 = 𝟏 834.35 0.12 

CONCLUSIONS  

In this study, an approach of applying robust optimization 

on an AC OPF based siting and sizing of energy storage 

devices in the distribution networks has been proposed. 
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Since DC OPF neglects the losses and may lead to an 

infeasible planning solution, the use of AC OPF in this 

study aimed at increasing accuracy in the planning.  

The polyhedral uncertainty set has been exploited for 

representing the uncertainty sets due to its flexibility to 

find a trade-off between economic efficiency and 

conservatism. The integration of this kind of flexibility 

also helped to observe scenarios other than the worst-case 

one that most of the robust optimization problems do not 

consider.   

By considering the worst-case scenario only, such 

problems do not provide an optimal solution rather a very 

conservative solution which could be unrealistic. 

However, the analytical reformulation technique helped to 

find the robust counterpart of the original problem that was 

solved with less computational burden using CPLEX.  

Since planning involves limited economic budget and 

resources, this study will provide a comprehensive view 

which is a combination of different scenario (budget of 

uncertainty). Moreover, the decision maker could also 

consider the external factors that are not considered in the 

model such as land use for storage placement, in the 

decision-making process to get the optimal solution by 

selecting the budget of uncertainty based on the planner’s 

perspective. 
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